[San Jose State University Special Al Lecture Series II - LLM & GenAl Deep Dive] Inside the Generative Revolution - Transformers and Technology-Market Nexus of LLMs

Sunghee Yun

Co-Founder & CTO @ Erudio Bio, Inc.
Co-Founder & CEO @ Erudio Bio Korea, Inc.
Leader of Silicon Valley Privacy-Preserving AI Forum (K-PAI)
CGO / Global Managing Partner @ LULUMEDIC
Global Leadership Initiative Fellow @ Salzburg Global Seminar
Visiting Professor & Advisory Professor @ Sogang Univ. & DGIST

About Speaker

• Co-Founder & CTO @ Erudio Bio, Inc., San Jose & Novato, CA, USA	2023 ~
• Co-Founder & CEO @ Erudio Bio Korea, Inc., Korea	2025 \sim
• Leader of Silicon Valley Privacy-Preserving AI Forum (K-PAI), CA, USA	2024 \sim
• CGO / Global Managing Partner @ LULUMEDIC, Seoul, Korea	2025 ~
KFAS-Salzburg Global Leadership Fellow @ Salzburg Global Seminar, Austria	2024 ~
• Adjunct Professor, EE Department @ Sogang University, Seoul, Korea	2020 ~
 Advisory Professor, EECS Department @ DGIST, Korea 	2020 \sim
• Al-Korean Medicine Integration Initiative Task Force Member @ The Assoc	iation of
Korean Medicine, Seoul, Korea	$2025 \sim$
 Director of AI Semiconductor @ K-BioX, CA, USA 	$2025 \sim$
 Global Advisory Board Member @ Innovative Future Brain-Inspired Intelligence 	e System
Semiconductor of Sogang University, Korea	$2020 \sim$
 Technology Consultant @ Gerson Lehrman Gruop (GLG), NY, USA 	$2022 \sim$
 Chief Business Development Officer @ WeStory.ai, Cupertino, CA, USA 	$2025 \sim$
 Advisor @ CryptoLab, Inc., Seoul, Korea 	$2025 \sim$

LLM & GenAl Deep Dive

 Co-Founder & CTO / Head of Global R&D / Chief Applied Scientist / S Gauss Labs, Inc., Palo Alto, CA, USA 	Senior Fellow @ $2020 \sim 2023$
• Senior Applied Scientist @ Amazon.com, Inc., Vancouver, BC, Canada	$2017 \sim 2020$
 Principal Engineer @ Software R&D Center, Samsung Electronics 	$2016 \sim 2017$
• Principal Engineer @ Strategic Marketing & Sales, Memory Business	$2015 \sim 2016$
Principal Engineer @ DT Team, DRAM Development, Samsung	$2012 \sim 2015$
• Senior Engineer @ CAE Team, Memory Business, Samsung, Korea	$2005 \sim 2012$
 PhD - Electrical Engineering @ Stanford University, CA, USA 	$2001 \sim 2004$
 Development Engineer @ Voyan, Santa Clara, CA, USA 	$2000 \sim 2001$
 MS - Electrical Engineering @ Stanford University, CA, USA 	$1998 \sim 1999$
BS - Electrical & Computer Engineering @ Seoul National University	$1994 \sim 1998$

LLM & GenAl Deep Dive

Highlight of Career Journey

- BS in Electrical Engineering (EE) @ Seoul National University
- MS & PhD in Electronics Engineering (EE) @ Stanford University
 - Convex Optimization Theory, Algorithms & Software
 - advisor Prof. Stephen P. Boyd
- Principal Engineer @ Samsung Semiconductor, Inc.
 - AI & Convex Optimization
 - collaboration with DRAM/NAND Design/Manufacturing/Test Teams
- Senior Applied Scientist @ Amazon.com, Inc.
 - e-Commerce Als anomaly detection, deep RL, and recommender system
 - Jeff Bezos's project drove \$200M in sales via Amazon Mobile Shopping App
- Co-Founder & CTO / Global R&D Head & Chief Applied Scientist @ Gauss Labs, Inc.
- Co-Founder & CTO @ Erudio Bio, Inc.
- Co-Founder & CEO @ Erudio Bio Korea, Inc.

Unpacking AI

•	Large Language Models (LLMs)	- 5
	 History & recent advances 	
	 Seq2seq models 	
	 Transformer architecture 	
•	Generative AI (genAI)	- 35
	 Definition, examples, and history 	
	 Mathy views on genAl 	
	 Current trend and future perspectives 	
•	Al Products	- 53
•	Al Market & Market Values	- 65
•	Selected references	- 77
•	References	- 79

LLM & GenAl Deep Dive

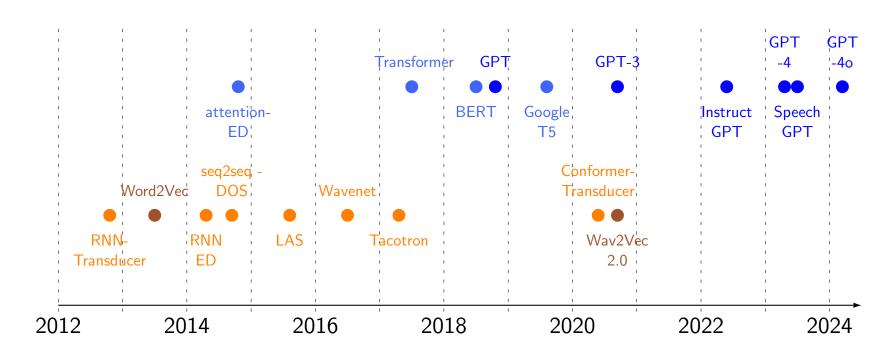
LLM

Language Models

History of language models

bag of words - first introduced	- 1954
• word embedding	- 1980
RNN based models - conceptualized by David Rumelhart	- 1986
• LSTM (based on RNN)	- 1997
380M-sized seq2seq model using LSTMs proposed	- 2014
• 130M-sized seq2seq model using gated recurrent units (GRUs)	- 2014
• Transformer - Attention is All You Need - A. Vaswani et al. @ Google	- 2017
 100M-sized encoder-decoder multi-head attention model for machine transl 	ation
 non-recurrent architecture, handle arbitrarily long dependencies 	
 parallelizable, simple (linear-mapping-based) attention model 	

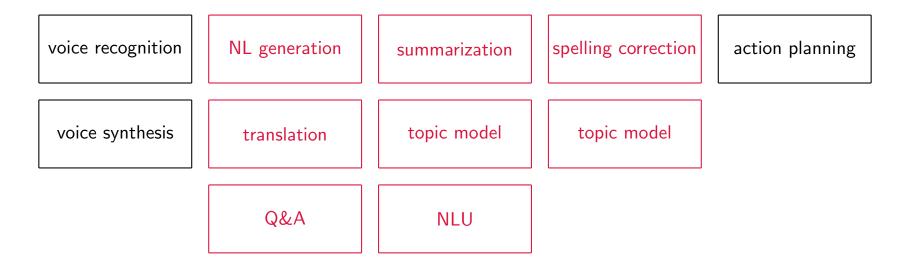
Recent advances in speech & language processing

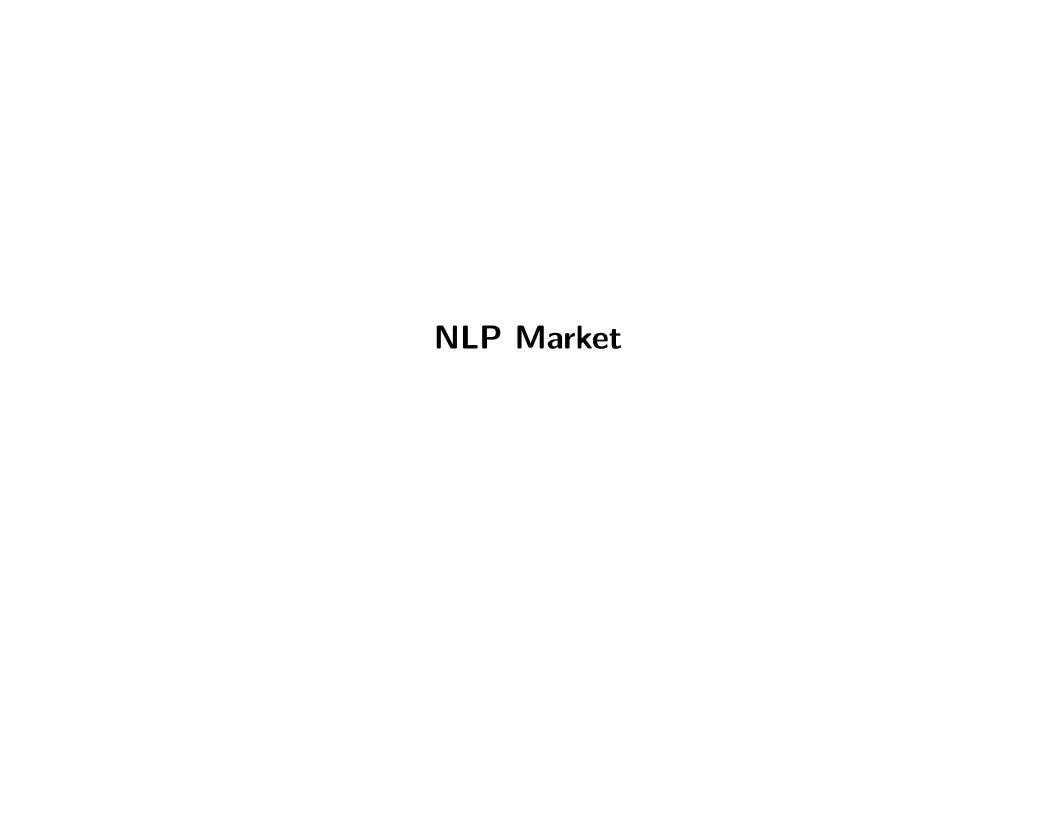


- LAS: listen, attend, and spell, ED: encoder-decoder, DOS: decoder-only structure

Types of language models

- many of language models have common requirements language representation learning
- can be learned via pre-tranining *high performing model* and fine-tuning/transfer learning/domain adaptation
- this *high performing model* learning essential language representation *is* (lanauge) foundation model
- actually, same for other types of learning, e.g., CV



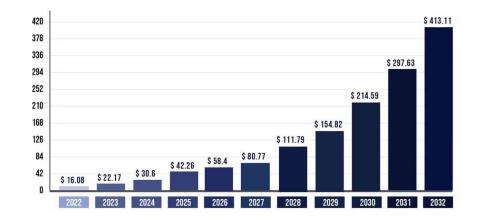


NLP market size

global NLP market size estimated at USD 16.08B in 2022, is expected to hit USD 413.11B by 2032 - CAGR of 38.4%

• in 2022

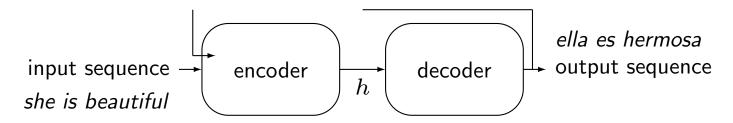
- north america NLP market size valued at USD 8.2B
- high tech and telecom segment accounted revenue share of over 23.1%
- healthcare segment held a 10% market share
- (by component) solution segment hit 76% revenue share
- (deployment mode) on-premise segment generated 56% revenue share
- (organizational size) large-scale segment contributed highest market share
- source Precedence Research



Sequence-to-Sequence Models

Sequence-to-sequence (seq2seq) model

- seq2seq take sequences as inputs and spit out sequences
- encoder-decoder architecture



- encoder & decoder can be RNN-type models
- $-h \in \mathbf{R}^n$ hidden state *fixed length* vector
- (try to) condense and store information of input sequence (losslessly) in (fixed-length) hidden states
 - finite hidden state not flexible enough, i.e., cannot handle arbitrarily large information
 - memory loss for long sequences
 - LSTM was promising fix, but with (inevitable) limits

RNN-type encoder-decoder architecture

 h_5

RNN

embed

 x_5

- components
 - embedding layer convert input tokens to vector representations
 - RNN layers process sequential information
 - unembedding (unemb) layer convert vectors back to vocabulary space
 - softmax produce probability distribution over vocabulary
- RNN can be basic RNN, LSTM, GRU, other specialized architecture

encoder

 h_3

RNN

embed

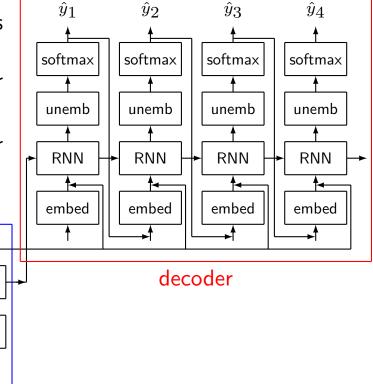
 x_3

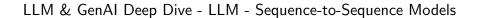
 h_4

RNN

embed

 x_4





 h_2

RNN

embed

 x_2

 h_1

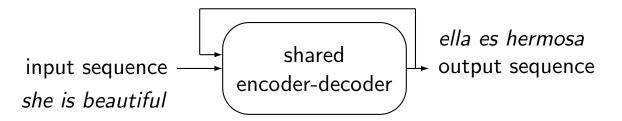
RNN

embed

 x_1

Shared encoder-decoder model

- single neural network structure can handle both encoding & decoding tasks
 - efficient architecture reducing model complexity
 - allow for better parameter sharing across tasks
- widely used in modern LLMs to process & generate text sequences
 - applications machine translation, text summarization, question answering
- advantages
 - efficient use of parameters, versatile for multiple NLP tasks



Large Language Models

LLM

LLM

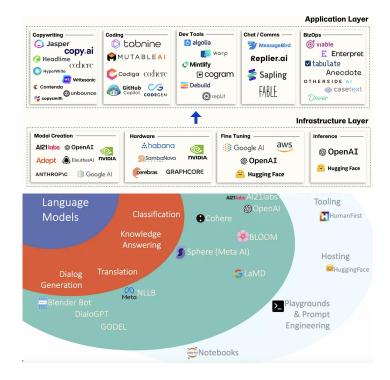
- type of AI aimed for NLP trained on massive corpus of texts
 programming code
- allow learn statistical relationships between words & phrases, i.e., conditional probabilities
- amazing performance shocked everyone unreasonable effectiveness of data (Halevry et al., 2009)

applications

- conversational Al agent / virtual assistant
- machine translation / text summarization / content creation/ sentiment analysis / question answering
- code generation
- market research / legal service / insurance policy / triange hiring candidates
- + virtually infinite # of applications

LLMs

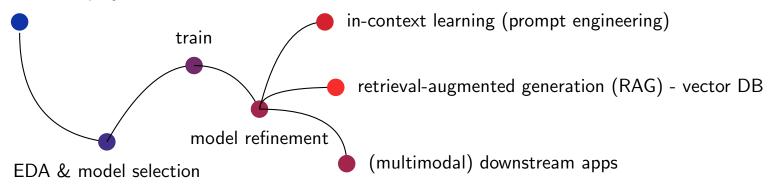
- Foundation Models
 - GPT-x/Chat-GPT OpenAI, Llama-x Meta, PaLM-x (Bard) Google
- # parameters
 - generative pre-trained transfomer (GPT) GPT-1: 117M, GPT-2: 1.5B, GPT-3: 175B, GPT-4:100T, GPT-4o: 200B
 - large language model Meta Al (Llama) Llama1:65B, Llama2: 70B, Llama3: 70B
 - scaling language modeling with pathways (PaLM)540B
- burns lots of cash on GPUs!
- applicable to many NLP & genAl applications

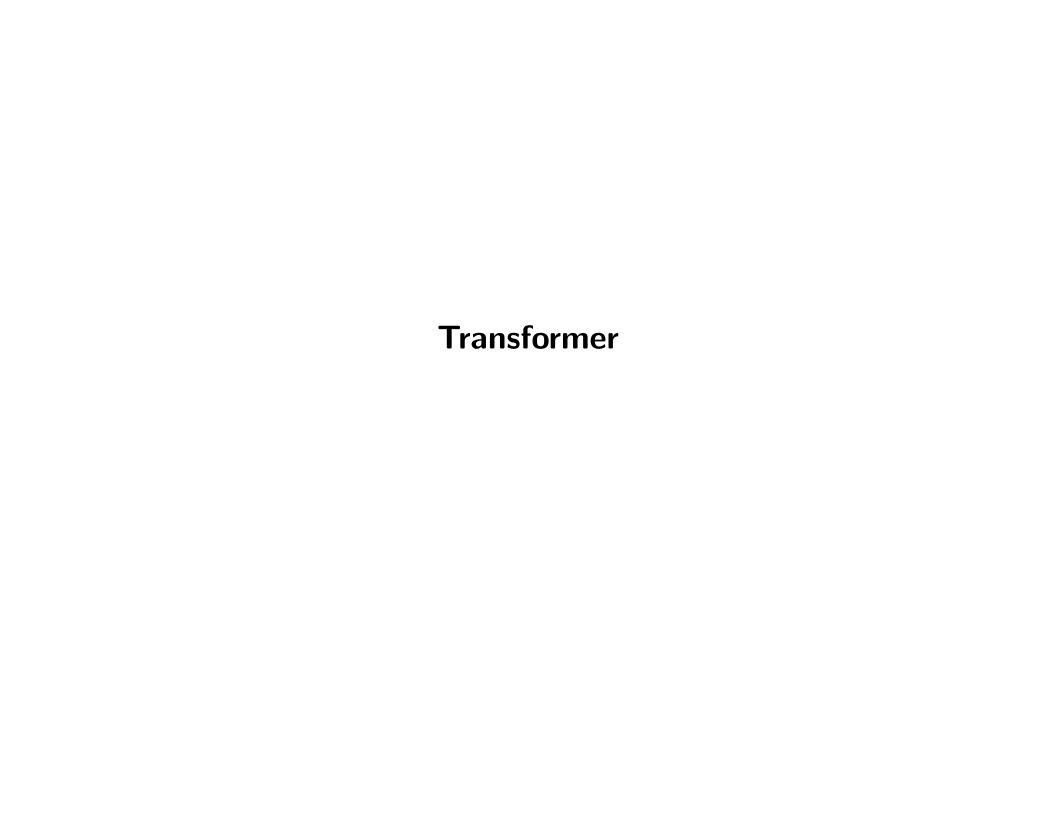


LLM building blocks

- data trained on massive datasets of text & code
 - quality & size critical on performance
- architecture GPT/Llama/Mistral
 - can make huge difference
- training self-supervised/supervised learning
- inference generates outputs
 - in-context learning, prompt engineering

goal and scope of LLM project





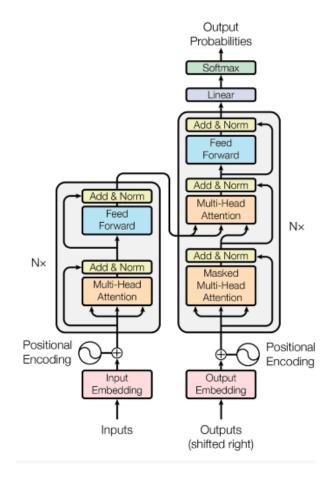
LLM architectural secret (or known) sauce

Transformer - simple parallelizable attention mechanism

A. Vaswani, et al. Attention is All You Need, 2017

Transformer architecture

- encoding-decoding architecture
 - input embedding space → multi-head & mult-layer representation space → output embedding space
- additive positional encoding information regarding order of words @ input embedding
- multi-layer and multi-head attention followed by addition / normalization & feed forward (FF) layers
- (relatively simple) attentions
 - single-head (scaled dot-product) / multi-head attention
 - self attention / encoder-decoder attention
 - masked attention
- benefits
 - evaluate dependencies between arbitrarily distant words
 - has recurrent nature w/o recurrent architecture \rightarrow parallelizable \rightarrow fast w/ additional cost in computation



Single-head scaled dot-product attention

- values/keys/queries denote value/key/query vectors, d_k & d_v are lengths of keys/queries & vectors
- we use *standard* notions for matrices and vectors not transposed version that (almost) all ML scientists (wrongly) use
- output: weighted-average of values where weights are attentions among tokens
- assume n queries and m key-value pairs

$$Q \in \mathbf{R}^{d_k \times n}, K \in \mathbf{R}^{d_k \times m}, V \in \mathbf{R}^{d_v \times m}$$

ullet attention! outputs n values (since we have n queries)

$$\operatorname{Attention}(Q, K, V) = V \operatorname{softmax}\left(K^{T}Q/\sqrt{d_{k}}\right) \in \mathbf{R}^{d_{v} \times n}$$

- much simpler attention mechanism than previous work
 - attention weights were output of complicated non-linear NN

Single-head - close look at equations

- ullet focus on ith query, $q_i \in \mathbf{R}^{d_k}$, $Q = [q_i] \in \mathbf{R}^{d_k imes n}$
- ullet assume m keys and m values, $k_1,\ldots,k_m\in \mathbf{R}^{d_k}\ \&\ v_1,\ldots,v_m\in \mathbf{R}^{d_v}$

$$K = [k_1 \quad \cdots \quad k_m] \in \mathbf{R}^{d_k \times m}, V = [v_1 \quad \cdots \quad v_m] \in \mathbf{R}^{d_v \times m}$$

• then

$$K^TQ/\sqrt{d_k} = \left[egin{array}{ccc} dots & dots \ - & k_j^Tq_i/\sqrt{d_k} & - \ dots & dots \end{array}
ight]$$

e.g., dependency between ith output token and jth input token is

$$a_{ij} = \exp\left(k_j^T q_i / \sqrt{d_k}\right) / \sum_{j=1}^m \exp\left(k_j^T q_i / \sqrt{d_k}\right)$$

ullet value obtained by ith query, q_i in $\operatorname{Attention}(Q,K,V)$

$$a_{i,1}v_1 + \cdots + a_{i,m}v_m$$

Multi-head attention

- evaluate h single-head attentions (in parallel)
- d_e : dimension for embeddings
- embeddings

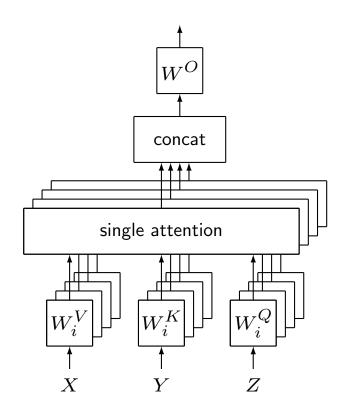
$$X \in \mathbf{R}^{d_e \times m}, Y \in \mathbf{R}^{d_e \times m}, Z \in \mathbf{R}^{d_e \times n}$$

 $e.g.,\ n$: input sequence length & m: output sequence length in machine translation

- h key/query/value weight matrices: $W_i^K, W_i^Q \in \mathbf{R}^{d_k \times d_e}$, $W_i^V \in \mathbf{R}^{d_v \times d_e}$ $(i=1,\ldots,h)$
- ullet linear output layers: $W^O \in \mathbf{R}^{de imes hdv}$
- multi-head attention!

$$W^{O} \left[\begin{array}{c} A_1 \\ \vdots \\ A_h \end{array} \right] \in \mathbf{R}^{d_e \times n},$$

$$A_i = \operatorname{Attention}(W_i^Q Z, W_i^K Y, W_i^V X) \in \mathbf{R}^{d_v \times n}$$

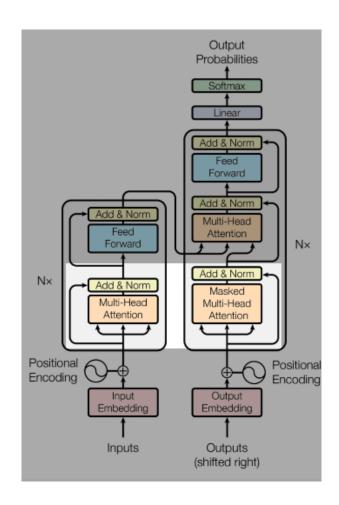


Self attention

- \bullet m=n
- encoder
 - keys & values & queries (K, V, Q) come from same place (from previous layer)
 - every token attends to every other token in input sequence

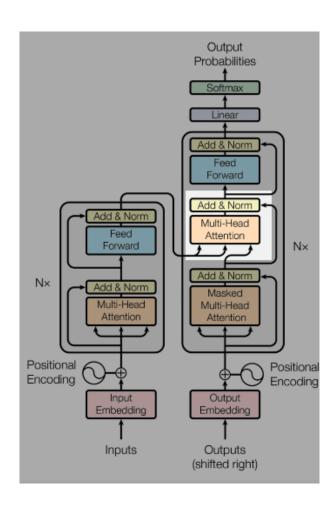
decoder

- keys & values & queries (K,V,Q) come from same place (from previous layer)
- every token attends to other tokens up to that position
- prevent leftward information flow to right to preserve causality
- assign $-\infty$ for illegal connections in softmax (masking)



Encoder-decoder attention

- m: length of input sequence
- n: length of output sequence
- n queries (Q) come from previous decoder layer
- ullet m keys / m values (K, V) come from output of encoder
- every token in output sequence attends to every token in input sequence

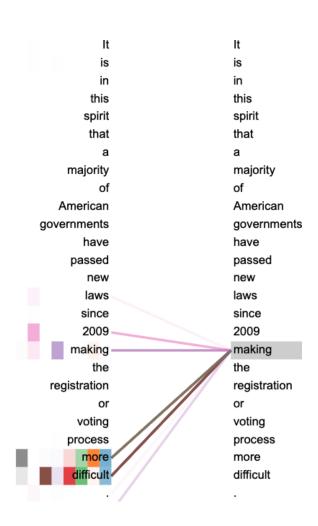


Visualization of self attentions

example sentence

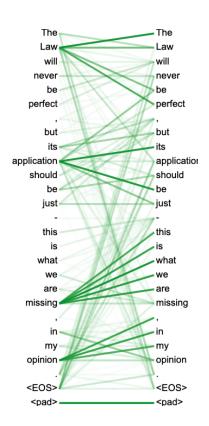
"It is in this spirit that a majority of American governments have passed new laws since 2009 making the registration or voting process more difficult."

- self attention of encoder (of a layer)
 - right figure
 - show dependencies between "making" and other words
 - different columns of colors represent different heads
 - "making" has strong dependency to "2009", "more", and "difficult"

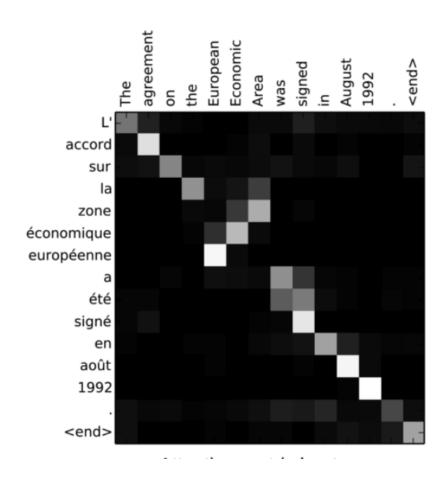


Visualization of multi-head self attentions

- self attentions of encoder for two heads (of a layer)
 - different heads represent different structures
 → advantages of multiple heads
 - multiple heads work together to colletively yield good results
 - dependencies not have absolute meanings (like embeddings in collaborative filtering)
 - randomness in resulting dependencies exists due to stochastic nature of ML training



Visualization of encoder-decoder attentions



- ullet machine translation: English o French
 - input sentence: "The agreement on the European Economic Area was signed in August 1992."
 - output sentence: "L' accord sur la zone économique européenne a été signé en août 1992."
- encoder-decoder attention reveals relevance between
 - European ↔ européenne
 - Economic \leftrightarrow européconomique
 - Area ↔ zone

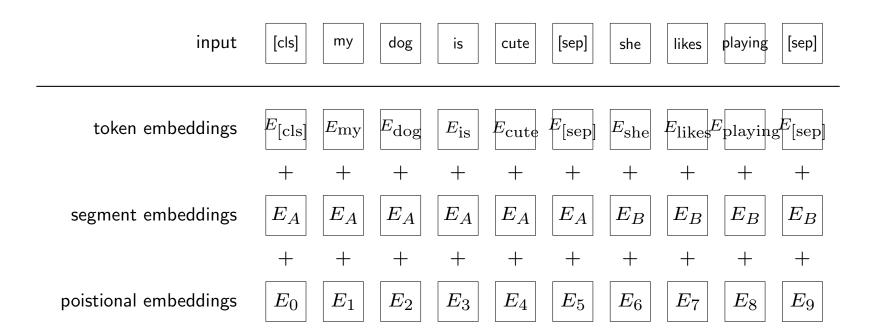
Model complexity

- computational complexity
 - -n: sequence length, d: embedding dimension
 - complexity per layer self-attention: $\mathcal{O}(n^2d)$, recurrent: $\mathcal{O}(1)$
 - sequential operations self-attention: $\mathcal{O}(1)$, recurrent: $\mathcal{O}(n)$
 - maximum path length self-attention: $\mathcal{O}(1)$, recurrent: $\mathcal{O}(n)$
- massive parallel processing, long context windows
 - → makes NVidia more competitive, hence profitable!
 - → makes SK Hynix prevail HBM market!

Variants of Transformer

Bidirectional encoder representations from transformers (BERT)

- Bidirectional Encoder Representations from Transformers [DCLT19]
- pre-train deep bidirectional representations from unlabeled text
- fine-tunable for multiple purposes



Challenges in LLMs

- hallucination can give entirely plausible outcome that is false
- data poison attack
- unethical or illegal content generation
- huge resource necessary for both training & inference
- model size need compact models
- outdated knowledge can be couple of years old
- lack of reproducibility
- biases more on this later . . .

do not, though, focus on downsides but on infinite possibilities!

- it evolves like internet / mobile / electricity
- only "tip of the iceburg" found & releaved

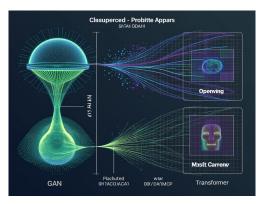
genAl

Definition of genAl

Generative AI

- genAl refers to systems capable of producing new (& original) contents based on patterns learned from training data (representation learning)
 - as opposed to discriminative models for, e.g., classification, prediction & regression
 - here content can be text, images, audio, video, etc. what about smell & taste?
- genAl model examples
 - generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion models, Transformers

by Midjourney



by Grok 2 mini

by Generative AI Lab

Examples of genAl in action

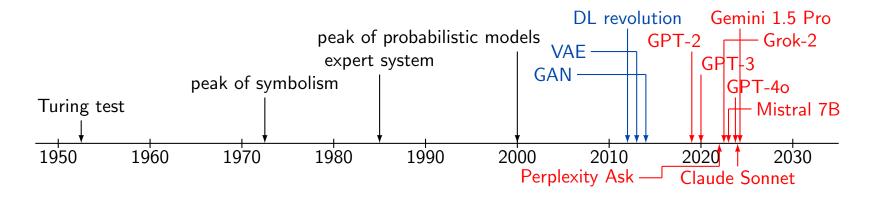
- text generation
 - Claude, ChatGPT, Mistral, Perplexity, Gemini, Grok
 - conversational agent writing articles, code & even poetry
- image generation
 - DALL-E creates images based on textual descriptions
 - Stable Diffusion uses diffusion process to generate high-quality images from text prompts (by denoising random noise)
 - MidJourney art and visual designs generated through deep learning
- music generation
 - Amper Music generates unique music compositions
- code generation
 - GitHub Copilot generates code snippets based on natural language prompts

History of genAl

Birth of AI - early foundations & precursor technologies

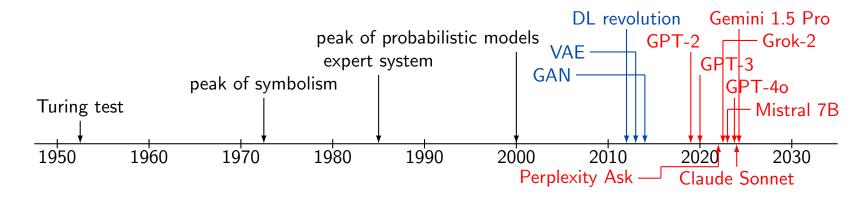
• $1950s \sim 1970s$

- Alan Turing concept of "thinking machine" & Turing test to evaluate machine intelligence (1950s)
- symbolists (as opposed to connectionists) early AI focused on symbolic reasoning, logic & problem-solving - Dartmouth Conference in 1956 by John McCarthy, Marvin Minsky, Allen Newell & Herbert A. Simon
- precursor technologies genetic algorithms (GAs), Markov chains & hidden Markov models (HMMs) laying foundation for generative processes (1970s \sim)



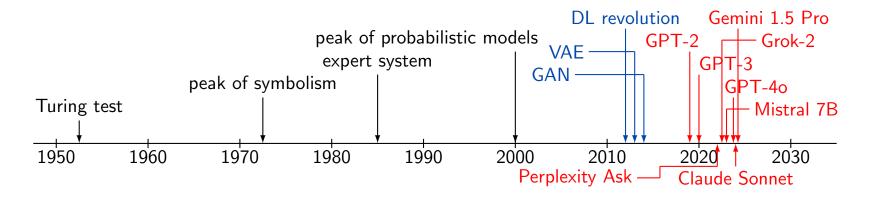
Rule-based systems & probabilistic models

- 1980s \sim early 2000s
 - expert systems (1980s) Al systems designed to mimic human decision-making in specific domains
 - development of neural networks (NN) w/ backpropagation training multi-layered networks - setting stage for way more complex generative models
 - probabilistic models (including network models, i.e., Bayesian networks) & Markov models laying groundwork for data generation & pattern prediction



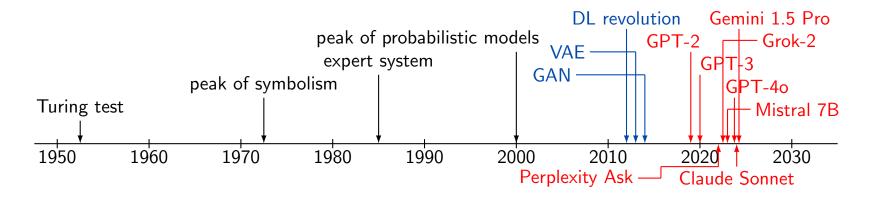
Rise of deep learning & generative models

- 2010s breakthrough in genAl
 - deep learning (DL) revolution advances in GPU computing and data availability led to the rapid development of deep neural networks.
 - variational autoencoder (VAE) (2013) by Kingma and Welling learns mappings between input and latent spaces
 - generative adversarial network (GAN) (2014) by Ian Goodfellow game-changer in generative modeling where two NNs compete each other to create realistic data
 - widely used in image generation & creative tasks



Transformer models & multimodal Al

- late 2010s \sim Present
 - Transformer architecture (2017) by Vaswani et al.
 - revolutionized NLP, e.g., LLM & various genAl models
 - GPT series generative pre-trained transformer
 - GPT-2 (2019) generating human-like texts marking leap in language models
 - GPT-3 (2020) 175B params set new standards for LLM
 - multimodal systems DALL-E & CLIP (2021) linking text and visual data
 - emergence of diffusion models (2020s) new approach for generating high-quality images progressively "denoising" random noise (DALL-E 2 & Stable Diffusion)



Mathy Views on genAl

genAl models

definition of generative model

- ullet generate samples in original space, $\mathcal X$, from samples in latent space, $\mathcal Z$
- \bullet g_{θ} is parameterized model e.g., CNN / RNN / Transformer / diffuction-based model
- training
 - finding θ that minimizes/maximizes some (statistical) loss/merit function so that $\{g_{\theta}(z)\}_{z\in\mathcal{Z}}$ generates plausiable point in \mathcal{X}
- inference
 - random samples z to generated target samples $x=g_{ heta}(z)$
 - e.g., image, text, voice, music, video

VAE - early genAl model

variational auto-encoder (VAE) [KW19]

$$\mathcal{X} \stackrel{q_{\phi}(z|x)}{\longrightarrow} \boxed{\mathcal{Z}\mathsf{o}} \stackrel{p_{ heta}(x|z)}{\longrightarrow} \boxed{\mathcal{X}}$$

ullet log-likelihood & ELBO - for any $q_\phi(z|x)$

$$\log p_{\theta}(x) = \underset{z \sim q_{\phi}(z|x)}{\mathbf{E}} \log p_{\theta}(x) = \underset{z \sim q_{\phi}(z|x)}{\mathbf{E}} \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \cdot \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$
$$= \mathcal{L}(\theta,\phi;x) + D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) \geq \mathcal{L}(\theta,\phi;x)$$

(indirectly) maximize likelihood by maximizing evidence lower bound (ELBO)

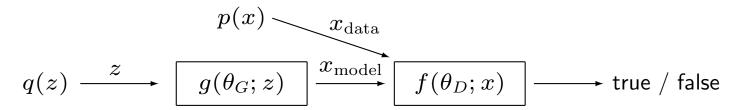
$$\mathcal{L}(heta, \phi; x) = \mathop{\mathbf{E}}_{z \sim q_{\phi}(z|x)} \log \frac{p_{ heta}(x, z)}{q_{\phi}(z|x)}$$

generative model

$$p_{\theta}(x|z)$$

GAN - early genAl model

generative adversarial networks (GAN) [GPAM⁺14]



value function

$$V(\theta_D, \theta_G) = \mathop{\mathbf{E}}_{x \sim p(x)} \log f(\theta_D; x)) + \mathop{\mathbf{E}}_{z \sim q(z)} \log (1 - f(\theta_D; g(\theta_G; z)))$$

- modeling via playing min-max game

$$\min_{\theta_G} \max_{\theta_D} V(\theta_D, \theta_G)$$

generative model

$$g(heta_G;z)$$

variants: conditional / cycle / style / Wasserstein GAN

genAI - LLM

• maximize conditional probability

maximize
$$d(p_{\theta}(x_t|x_{t-1}, x_{t-2}, ...), p_{\text{data}}(x_t|x_{t-1}, x_{t-2}, ...))$$

where $d(\cdot, \cdot)$ distance measure between probability distributions

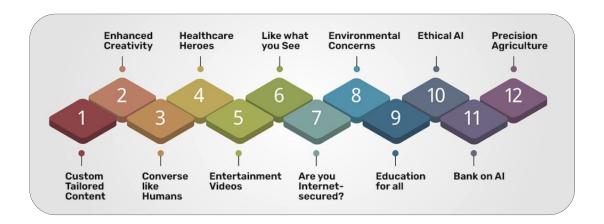
- previous sequence: x_{t-1}, x_{t-2}, \ldots
- next token: x_t
- ullet $p_{ heta}$ represented by (extremely) complicated model
 - e.g., containing multi-head & multi-layer Transformer architecture inside
- ullet model parameters, e.g., for Llama2

$$\theta \in \mathbf{R}^{70,000,000,000}$$

Current Trend & Future Perspectives

Current trend of genAl

- rapid advancement in language models & multimodal AI capabilities
- rise of Al-assisted creativity & productivity tools
- growing adoption across industries
 - creative industries design, entertainment, marketing, software development
 - life sciences healthcare, medical, biotech
- \bullet infrastructure & accessibility, e.g., Hugging Face democratizes AI development
- integration with cloud platforms & enterprise-level tools
- increased focus on AI ethics & responsible development



Industry & business impacts

- how genAl is transforming industries
 - creative industries content creation advertising, gaming, film
 - life science enhance research, drug discovery & personalized treatments
 - finance automating document generation, risk modeling & fraud detection
 - manufacturing & Design rapid prototyping, 3D modeling & optimization
 - business operations automate routine tasks to boost productivity

Future perspectives of genAl

- hyper-personalization highly personalized content for individual users music, products
 & services
- Al ethics & governance concerns over deepfakes, misinformation & bias
- interdisciplinary synergies integration with other fields such as quantum computing, neuroscience & robotics
- human-Al collaboration augment human creativity rather than replace it
- energy efficiency have to figure out how to dramatically reduce power consumption

AI Products

Al product development - trend and characteristics

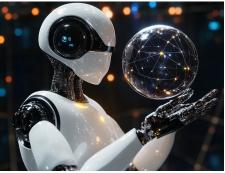
• rapid pace of innovation - new AI models & products being released at unprecedented rate, improvements coming in weeks or months (rather than years)

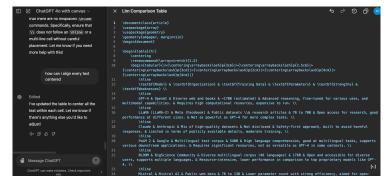
- LLMs dominating models like GPT-4 & Claude pushing boundaries in NLP & genAl
- multimodal AI gaining traction models processing & generating text, images & even video becoming more common, e.g., Grok, GPT-4, Gemini w/ vision capabilities
- *open-source* Al movement growing trend of open-source Al models and tools, challenging dominance of proprietary systems
- Al integration in everyday products from smartphones to home appliances, Al being integrated into wide array of consumer products

Al product development - trend and characteristics

• ethical Al & regulatory focus - increased attention on ethical implications of Al & calls for regulation of Al development and deployment

- Al in enterprise businesses across industries rapidly adopting Al for various applications
- specialized Al models development of Al models tailored for specific industries or tasks, e.g., healthcare, biotech, financial analysis
- Al-assisted coding and development help software developers write code more efficiently
 tools becoming increasingly sophisticated
- concerns about Al safety & existential risk growing debate about potential short & long-term risks of advanced Al





LLM products

- OpenAI ChatGPT 4o, GPT-4 Turbo Canvas
- Anthropic Claude 3.5 Sonnet (with Artifacts), Claude 3 Opus, Claude 3 Haiku
- Mistral AI Mistral 7B, Mistral Large 2, Mistral Small xx.xx, Mistral Nemo (12B)
- Google Gemini (w/ 1.5 Flash), Gemini Advanced (w/ 1.5 Pro)
- X Grok [mini] [w/ Fun Mode]
- Perplexity AI Perplexity [Pro] combines GPT-4, Claude 3.5, and Llama 3
- Liquid AI Liquid-40B, Liquid-3B (running on small devices)

flying cats generated by Grok, ChatGPT 40 & Gemini

Comparison of LLMs & LLM products

model	developer	training data	# params	strength	weakness
GPT-4	OpenAI	web & books	170B	advanced reasoning & multimodal capabilities	high computational resources
LLaMA-2	Meta	public info & research articles	7∼70B	open access & good performance for different sizes	not powerful for complex tasks
Claude	Anthropic	mix of high-quality datasets	not disclosed	safety-first approach avoiding harmful responses	limited in publicly available details
PaLM 2	Google	multilingual text corpus	540B	high multilingual comprehension supporting various downstream apps	significant resources & not versatile in some contexts

Comparison of LLMs & LLM products

model	developer	training data	# params	strength	weakness
BLOOM	BigScience Community	diverse multilingual corpus	176B	open & support multiple languages	resource-intensive & lower performance
Mistral ¹	Mistral Al	public web data	7~13B	lower parameter count	limited scalability for specialized apps
Liquid Foundation Model (LFM)	Liquid AI	adaptive datasets	adaptive & dynamic parameters	modular & support more specialized fine-tuning for niche use-cases & adaptable in deployment	complexity in design and implementation

Multimodal genAl products

DALL-E by OpenAI

- generate unique and detailed images based on textual descriptions
- understanding context and relationships between words
- Midjourney by Midjourney
 - let people create imaginative artistic images
 - can interactively guide the generative process, providing high-level directions

Multimodal genAl products

- Dream Studio by Stability Al
 - analyze patterns in music data & generates novel compositions
 - musicians can explore new ideas and enhance their *creative* processes
- Runway by Runway Al
 - realistic images, manipulate photos, create
 3D models & automate filmmaking

Rise of co-pilot products

 definition - Al-powered tools designed to enhance human productivity across multiple domains including document creation, presentations & coding

benefits

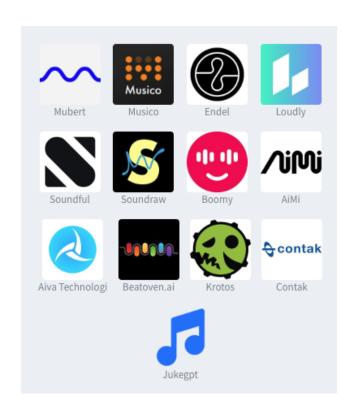
- efficiency automate repetitive tasks allowing users to focus on high-value activities
- error reduction minimize mistakes common in manual work
- creativity suggestions and prompts help users explore new ideas and approaches
- integration with major productivity suites Microsoft 365, Google Workspace
- popular products
 - GitHub Copilot, Microsoft 365 Copilot, Grammarly AI, Visual Studio Code Extensions

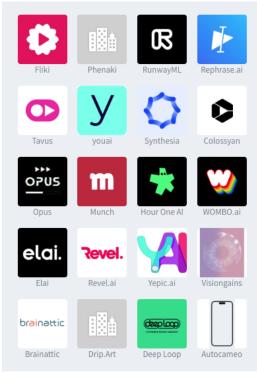
Future of co-pilot products

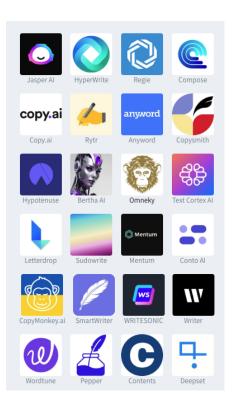
- potential advancements
 - wider adoption across industries and professions
 - real-time fully automated collaboration, predictive content generation, personalization
- impact on work environments & creative processes
 - collaborative human-Al relationships with augmented reality
 - unprecedented levels of problem-solving due to *augmented cognitive abilities*
- challenges & considerations
 - ethical concerns around data privacy & AI decision-making
 - potential impact on human skills & job markets

Other AI products - audio/video/text

audio vidio text

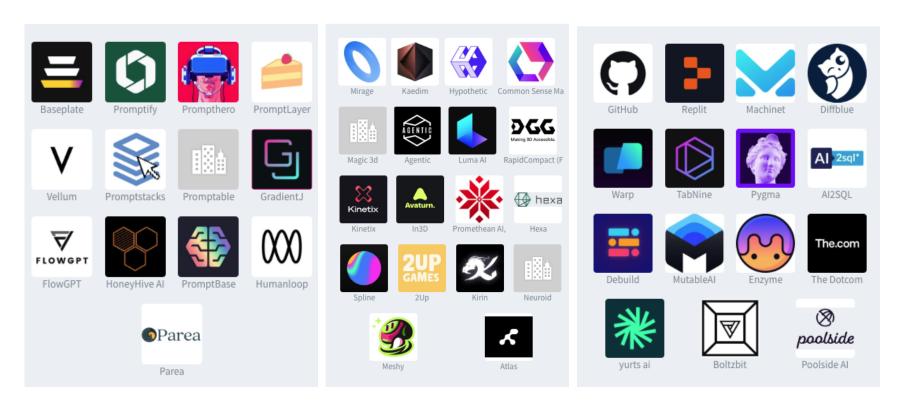






Other AI products - LLM/gaming/design/coding

LLM gaming & design coding



Al Market & Values

Al market

• PwC, one of "big four" accounting firms, believes

- Al can add \$15.7 trillion to the global economy by 2030

Cloud stacks

- \bullet SaaS dominates cloud stack account for 40% of total cloud stack market with estimated TAM of \$260B
- IaaS and PaaS significant players
- semi-cloud's niche presence

cloud stack	companies	estimated TAM	% total in stack
SaaS apps	Salesforce, Adobe	\$260B	40%
PaaS	Confluent, snowflake	\$140B	22%
IaaS	AWS, Azure, GCP	\$200B	30%
cloud semis	AMD, Intel	\$50B	8%

Al stacks

• Al investment landscape - Al sector witnessing significant capital inflow with total funding of approximately \$29 billion across various segments

- models lead pack Al models, particularly those developed by OpenAl and Anthropic, attracted lion's share of investments, accounting for 60% of total funding
- diverse growth while models dominate funding, other segments like apps, Al cloud, and Al semis also experiencing substantial growth, indicating broadening Al ecosystem

Al stack	companies	total funding	% total in stack
apps	character.io, replit	~\$5B	17%
models	openAI, ANTHROP\C	~\$17B	60%
Alops	Hugging Face, Weights & Biases	s ~\$1B	4%
Al cloud	databricks, Lambda	~\$4B	13%
Al semis	cerebras, SambaNova	~\$2B	6%

Al model companies

- Al model companies competing for which Al model companies will dominate 2020s
- venture funding surge private AI model companies raised approximately \$17B since 2020, indicating strong investor confidence
- growing open-source presence becoming increasingly prevalent, adding competition and innovation to Al landscape
- key players notable companies in Al model space include Adept, OpenAl, Anthropic,
 Imbue, Inflection, Cohere, and Aleph Alpha
- outcome uncertain future success is still to be determined, reflecting dynamic and evolving nature of Al industry

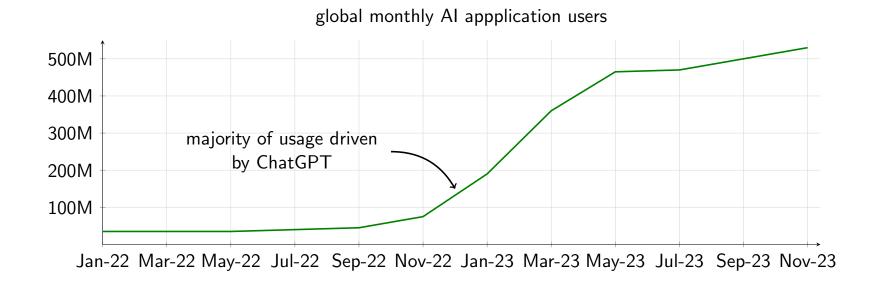
Al advancing much faster

- rapid Al advancement general Al projected to progress from basic content generation to superhuman reasoning in only 5 years
- significantly outpacing 15-year timeline for fully autonomous vehicles

autonomy level	autonomous vehicles	genAl
L5	fullly autonomous	superhuman reasoning & perception
L4	highly autonomous	Al autopilot for complex tasks
L3	self-driving with light intervention	Al co-pilot for skilled labor
L2	Tesla autopilot	supporting humans with basic tasks
L1 1	cruise control 5 yrs	generating basic content 5 yrs

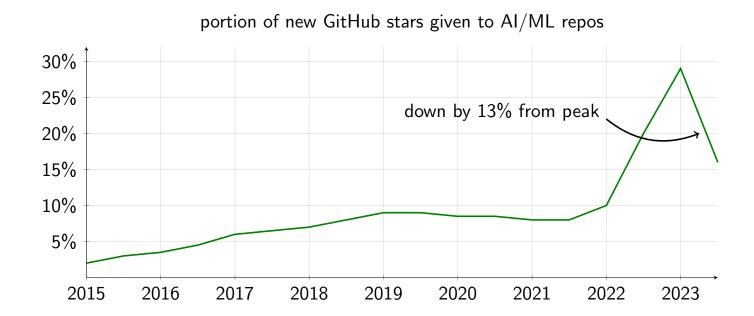
Al interest of users

- Al adoption approaching saturation initial wave may be nearing saturation
- future growth might come from deeper integration into professional workflows & specialized applications
- potential for market diversification ChatGPT drove majority of early growth, but now we have other LLMs - Claude, Mistral, Gemini, Grok, Perplexity



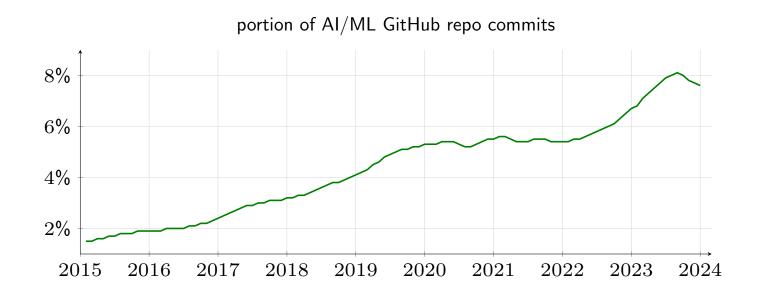
Al interest of developers

- rising popularity portion of new GitHub stars given to AI/ML repositories steadily increased from 2015 to 2022
- excitement waning & washing out AI "tourists" decline of 13% from peak in 2022
- could indicate potential factors such as market saturation, economic conditions, or shifts in developer preferences



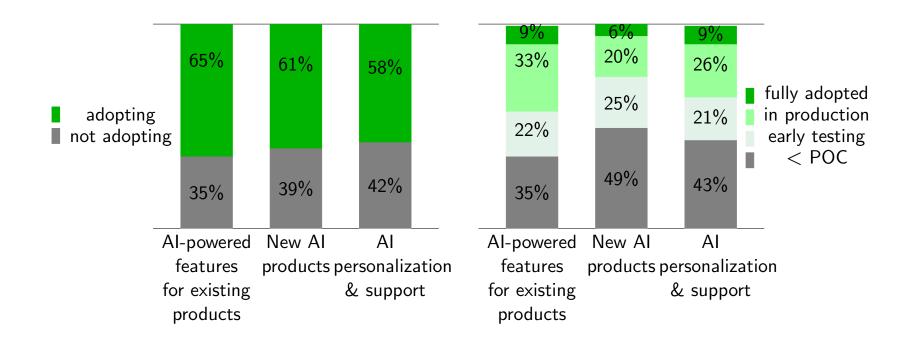
Developers' contribution to software packages

- steep acceleration from 2022 to 2024 correlates with explosion of LLMs & genAl
- suggesting transformative shift in Al landscape beyond gradual growth
- AI/ML still represents relatively small portion (less than 10%)
- indicating significant room for growth and mainstream adoption across various software domains



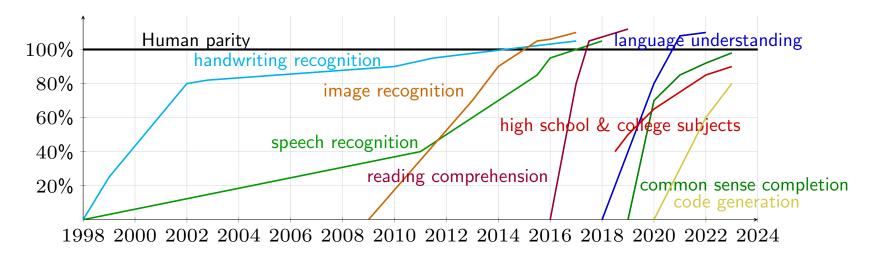
Enterprises adoptiong AI

- more than 60% of enterprises planning to adopt Al
- full adoption rate is less than 10% will take long time



Al getting better and faster

- steep upward slopes of AI capabilities highlight accelerating pace of AI development
 - period of exponential growth with AI potentially mastering new skills and surpassing human capabilities at ever-increasing rate
- closing gap to human parity some capabilities approaching or arguably reached human parity, while others having still way to go
 - achieving truly human-like capabilities in broad range remains a challenge



Al delivers game-changing values

- time developers save using GitHub Copilot 55%
 - -10M+ cumulative downloads as of 2024 & 1.3M paid subscribers 30% Q2Q increase
 - improves developer productivity by 30%+
- reduction in human-answered customer support requests 45%
 - cost per support interaction 95% save / \$2.58 (human) vs \$0.13 (AI)
 - median response time 44 min faster / 45 min (human) vs 1 min (AI)
 - median customer satisfaction 14% higher / 55% (human) vs 69% (AI)
- time saved from editing video in runway 90%
- Al chat rated higher quality compared to physician responses 79%

Selected References & Sources

Selected references & sources

•	Robert H. Kane "Quest for Meaning: Values, Ethics, and the Modern Experience"	2013
•	Michael J. Sandel "Justice: What's the Right Thing to Do?"	2009
•	Daniel Kahneman "Thinking, Fast and Slow"	2011
•	Yuval Noah Harari "Sapiens: A Brief History of Humankind"	2014
•	M. Shanahan "Talking About Large Language Models"	2022
•	A.Y. Halevry, P. Norvig, and F. Pereira "Unreasonable Effectiveness of Data"	2009
•	A. Vaswani, et al. "Attention is all you need" @ NeurIPS	2017
•	S. Yin, et. al. "A Survey on Multimodal LLMs"	2023
•	Chris Miller "Chip War: The Fight for the World's Most Critical Technology"	2022

- CEOs, CTOs, CFOs, COOs, CMOs & CCOs @ startup companies in Silicon Valley
- VCs on Sand Hill Road Palo Alto, Menlo Park, Woodside in California, USA

References

References

- [DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.
- [GPAM⁺14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.
- [KW19] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foundations and Trends in Machine Learning, 12(4):307–392, 2019.
- [VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of 31st Conference on Neural Information Processing* Systems (NIPS), 2017.

Thank You